• Home
  • Team
  • Publications
  • Projects
  • Research
  • Contact
  • Spin off
  • Students

Martina Iammarino

Home Team Martina Iammarino

Martina Iammarino

PhD, Assistant Professor

martina.iammarino _at_ uniba.it

Bio

Martina Iammarino is a Researcher at the Department of Computer Science at the University of Bari Aldo Moro, Italy. She obtained the PhD in Information Technology for Engineering in February 2023 and the master’s degree in 2019 at the University of Sannio. Her current research activities focus on software engineering , software and data quality, process and data engineering. Specifically, more recently, her research dealing with artificial intelligence techniques have been validated in the medical domain. In this regard, she has published several articles based on machine learning and deep learning techniques, applied to different domains. She has also been a reviewer for numerous international conferences and journals and a member of the organizing and program committees of international conferences.
She is among the main organizers of the CISE special session “Computational Intelligence in Software Engineering” held within IJCNN in 2024.

Teaching

  • Machine Learning Methods in eHealth: Strategies for Analyzing Healthcare Data at the PhD Course in Digital Innovation and eHealth

Publications

2025
  • What Time Is It? Finding Which Temporal Features is More Useful for Next Activity Prediction
    Lerina Aversano, Martina Iammarino, Antonella Madau, Giuseppe Pirlo, Gianfranco Semeraro
    IEEE Open J. Comput. Soc. 6: 261-271
    DOI: 10.1109/OJCS.2024.3519815
  • Process mining applications in healthcare: a systematic literature review
    Lerina Aversano, Martina Iammarino, Antonella Madau, Giuseppe Pirlo, Gianfranco Semeraro
    PeerJ Comput. Sci. 11: e2613
    DOI: 10.7717/PEERJ-CS.2613
2024
  • A systematic review on artificial intelligence approaches for smart health devices
    Lerina Aversano, Martina Iammarino, Ilaria Mancino, Debora Montano
    PeerJ Comput. Sci. 10: e2232
    DOI: 10.7717/PEERJ-CS.2232
  • Adopting Delta Maintainability Model for Just in Time Bug Prediction
    Lerina Aversano, Martina Iammarino, Antonella Madau, Debora Montano, Chiara Verdone
    ICSOFT 2024: 419-426
    DOI: 10.5220/0012785100003753
  • A Machine Learning Approach for the Detection of Thoracic Disease using Chest X-ray reports
    Lerina Aversano, Martina Iammarino, Antonella Madau, Debora Montano, Chiara Verdone
    KES 2024: 1130-1139
    DOI: 10.1016/J.PROCS.2024.09.535
  • Raman Spectroscopy of Cancer Cells: An Explainable Classification Model
    Andrea Cusano, Martina Iammarino, Marco Pisco, Sara Spaziani, Chiara Verdone
    MetroXRAINE 2024: 849-854
    DOI: 10.1109/METROXRAINE62247.2024.10796642
2023
  • Evo-GUNet3++: Using evolutionary algorithms to train UNet-based architectures for efficient 3D lung cancer detection
    Pasquale Ardimento, Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Chiara Verdone
    Appl. Soft Comput. 144: 110465
    DOI: 10.1016/J.ASOC.2023.110465
  • A data-aware explainable deep learning approach for next activity prediction
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Chiara Verdone
    Eng. Appl. Artif. Intell. 126: 106758
    DOI: 10.1016/J.ENGAPPAI.2023.106758
  • Forecasting technical debt evolution in software systems: an empirical study
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Debora Montano
    Frontiers Comput. Sci. 17[3]: 173210
    DOI: 10.1007/S11704-022-1541-7
  • Machine Learning Applied to Speech Recordings for Parkinson's Disease Recognition
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Antonella Madau, Chiara Verdone
    DeLTA 2023: 101-114
    DOI: 10.1007/978-3-031-39059-3_7
  • An Explainable Approach for Early Parkinson Disease Detection Using Deep Learning
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Antonella Madau, Chiara Verdone
    DeLTA 2023: 326-339
    DOI: 10.1007/978-3-031-39059-3_22
  • An Empirical Study on the Relationship Between the Co-Occurrence of Design Smell and Refactoring Activities
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Debora Montano
    ENASE 2023: 742-749
    DOI: 10.5220/0012006600003464
  • Early Parkinson's Disease Detection from EEG Traces Using Machine Learning Techniques
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Debora Montano, Chiara Verdone
    EUSFLAT/AGOP 2023: 607-619
    DOI: 10.1007/978-3-031-39965-7_50
  • Understanding Compiler Effects on Clone Detection Process
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Debora Montano
    ICSOFT 2023: 345-352
    DOI: 10.5220/0012080100003538
  • Early Diagnosis of Parkinson's Disease Exploting Motor and Non-Motor Symptoms: Results from the PPMI Cohort
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Antonella Madau, Chiara Verdone
    KES 2023: 2096-2105
    DOI: 10.1016/J.PROCS.2023.10.200
  • Raman Spectroscopy of Cells for Cancer Classification Through Machine Learning
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Andrea Cusano, Martina Iammarino, Marco Pisco, Sara Spaziani, Chiara Verdone
    MetroXRAINE 2023: 688-693
    DOI: 10.1109/METROXRAINE58569.2023.10405759
  • Forecasting the Developer's Impact in Managing the Technical Debt
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino
    PROFES 2023: 35-47
    DOI: 10.1007/978-3-031-49269-3_4
2022
  • Using deep temporal convolutional networks to just-in-time forecast technical debt principal
    Pasquale Ardimento, Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino
    J. Syst. Softw. 194: 111481
    DOI: 10.1016/J.JSS.2022.111481
  • Just-in-time software defect prediction using deep temporal convolutional networks
    Pasquale Ardimento, Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino
    Neural Comput. Appl. 34[5]: 3981-4001
    DOI: 10.1007/S00521-021-06659-3
  • Using Machine Learning for Classification of Cancer Cells from Raman Spectroscopy
    Lerina Aversano, Mario Luca Bernardi, Vincenzo Calgano, Marta Cimitile, Concetta Esposito, Martina Iammarino, Marco Pisco, Sara Spaziani, Chiara Verdone
    DeLTA 2022: 15-24
    DOI: 10.5220/0011142600003277
  • Using Machine Learning for early prediction of Heart Disease
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Debora Montano, Chiara Verdone
    EAIS 2022: 1-8
    DOI: 10.1109/EAIS51927.2022.9787720
  • A Machine Learning approach for Early Detection of Parkinson's Disease Using acoustic traces
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Debora Montano, Chiara Verdone
    EAIS 2022: 1-8
    DOI: 10.1109/EAIS51927.2022.9787728
  • An Empirical Study to Predict Student Performance Using Information of the Virtual Learning Environment
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Debora Montano, Chiara Verdone
    HELMeTO 2022: 536-547
    DOI: 10.1007/978-3-031-29800-4_41
  • Is There Any Correlation between Refactoring and Design Smell Occurrence
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Debora Montano
    ICSOFT 2022: 129-136
    DOI: 10.5220/0011139400003266
  • Early Detection of Parkinson's Disease using Spiral Test and Echo State Networks
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Chiara Verdone
    IJCNN 2022: 1-8
    DOI: 10.1109/IJCNN55064.2022.9891917
  • An enhanced UNet variant for Effective Lung Cancer Detection
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Chiara Verdone
    IJCNN 2022: 1-8
    DOI: 10.1109/IJCNN55064.2022.9892757
  • Technical Debt Forecasting from Source Code Using Temporal Convolutional Networks
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino
    PROFES 2022: 581-591
    DOI: 10.1007/978-3-031-21388-5_43
2021
  • Temporal convolutional networks for just-in-time design smells prediction using fine-grained software metrics
    Pasquale Ardimento, Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino
    Neurocomputing 463: 454-471
    DOI: 10.1016/J.NEUCOM.2021.08.010
  • An empirical study on the co-occurrence between refactoring actions and Self-Admitted Technical Debt removal
    Martina Iammarino, Fiorella Zampetti, Lerina Aversano, Massimiliano Di Penta
    J. Syst. Softw. 178: 110976
    DOI: 10.1016/J.JSS.2021.110976
  • Transfer Learning for Just-in-Time Design Smells Prediction using Temporal Convolutional Networks
    Pasquale Ardimento, Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino
    ICSOFT 2021: 310-317
    DOI: 10.5220/0010602203100317
  • Technical Debt predictive model through Temporal Convolutional Network
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino
    IJCNN 2021: 1-8
    DOI: 10.1109/IJCNN52387.2021.9534423
  • Thyroid Disease Treatment prediction with machine learning approaches
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Paolo Emidio Macchia, Immacolata Cristina Nettore, Chiara Verdone
    KES 2021: 1031-1040
    DOI: 10.1016/J.PROCS.2021.08.106
2020
  • On the Relationship between Self-Admitted Technical Debt Removals and Technical Debt Measures
    Lerina Aversano, Martina Iammarino, Mimmo Carapella, Andrea Del Vecchio, Laura Nardi
    Algorithms 13[7]: 168
    DOI: 10.3390/A13070168
  • An Empirical Study on the Evolution of Design Smells
    Lerina Aversano, Umberto Carpenito, Martina Iammarino
    Inf. 11[7]: 348
    DOI: 10.3390/INFO11070348
  • Investigating on the Relationships between Design Smells Removals and Refactorings
    Lerina Aversano, Mario Luca Bernardi, Marta Cimitile, Martina Iammarino, Kateryna Romanyuk
    ICSOFT 2020: 212-219
    DOI: 10.5220/0009887102120219
  • A Topic Modeling Approach To Evaluate The Comments Consistency To Source Code
    Martina Iammarino, Lerina Aversano, Mario Luca Bernardi, Marta Cimitile
    IJCNN 2020: 1-8
    DOI: 10.1109/IJCNN48605.2020.9207651
2019
  • Self-Admitted Technical Debt Removal and Refactoring Actions: Co-Occurrence or More
    Martina Iammarino, Fiorella Zampetti, Lerina Aversano, Massimiliano Di Penta
    ICSME 2019: 186-190
    DOI: 10.1109/ICSME.2019.00029

© 2024 - Intelligent Systems Laboratory - University of Bari "Aldo Moro"